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Abstract-—Following Atkinson and Craster (Proc. R. Soc. Lond. A 434, 605-633. 1991), Craster
and Atkinson (J. Mech. Phys. Solids. accepted, 1992), we consider the problem of quasi-static plane
strain fracture at the interface between different linear isotropic clastic diffusive solids. i.c. fully
coupled poreclastic and thermoelastic materiats. The problem of quasi-static growing cracks or the
initiation of fracture between the materials is of particular interest. In fabricated materials there is
a possibility of imperfect bonding or welding, hence fracture is often initiated near or at the interface.
We consider here the shightly simpler case when one of the materials s rigid and the intertuce is
cither completely permeable (conducting) or impermeable (insulated). Such an assumption about
the interfice ts common in geophysics and is relevant to the case of two completely different materials
welded together in industry.

The solution for impulsively opening cracks is considered here using general potential solutions

of the poroelastic (thermoclastic) equations used together with Laplace and Fourier transforms.
Solution then proceeds by use of the Wiener Hopt technique ; the resulting transtormed results are
then examined in the neighbourhood of the crack tip. The oscillutory singularity, as caleulated by
Williams (Bull. Seismol. Soc. America 49, 199 204, 1959) (or intertacial fracture in lincar isotropic
clastictty, s recovered as o particular case. This osatlatory singularity which predicts inter-
penetration ot the crack walls (England, ASME J. Appl. Mech. 32, 400 402, 1965) need not lead
us to disregard the solution, although it invalidates the results on the scaie of the contact zone.
Provided this zone is much smaller than the crack length, the results are sull valid for the zone near
the crack tip.

A contact zone model of the Comninou (ASME J. Appl. Mech., 1977) type is then developed.

The oscillatory solution is then used as an outer solution in the method of matched asymptotic
expansions as i Atkimson (fne. Jo Fracture 18, 161-177, 19820 Int. J. Fracture 19, 131138,
1982by; this s then matched with an appropriate inner solution to correct for the unphysical
interpenctration of the crack walls. This approuch is valid for small contact zone lengths due to the
infterpencetration eflect.

The problem of steadily propagating fracture is also briclly considered and the stress intensity

factors and distinctive near crack tip pore pressure ficlds are evatuated.
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NOMENCLATURE

Biot's coeflicient of eflective stress, i.e. the ratio of fluid volume to the volume change of solid
allowing the fluid to drain, where 0 < 2 < 1

1s the bulk modulus x the coeflicient of thermal expansion

Skempton's pore pressure coetlicient, (Skempton, 1954) i.e. the ratio of induced pore pressure to
the vartation of mean normal compression under undrained conditions

generahized consolidation cocllicient

spectic heat per unit volume in the absence of deformation

Kronecker delta

didatation

components of the stritin tensor

permeability coctficient

coetlicient of heat conduction

is the shear modulus

is a measure of the change in fluid content generated in a unit reference volume during a change of
pressure with the strains kept constant

t Permancnt address: Department of Mathematics, Imperial College of Science. Technology and Medicine,
London SW7 2BZ. U K.
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m mass of fluid per unit volume

v, drained and undrained Poisson ratios, where v < v, € 4

P puore pressure. e, the increase in Auid pressure from a reference pressure p,
73 mass flux vector

2o reference density

5038 the Laplace and Fourter Transtorm vartables respectively

a, stress tensor

T, reference temperature

t increase in temperature

&, displacement vector

M vartation of fluid content per unit reference volume. te. mass of tfhud per umt volume. initial density p,,

and the following relations are used in the text:

3y, —v)
= BiTnn <) “
0=
0= g
5= 11::3‘: )
e ®
236G, = 3.‘;(”!‘5_‘:‘)’ - ;Q (6)
;= {1 —v) . (e .. )

2r,—v) A —e)(26G,)

Forv < v, < Hhenod > 1 Note the saturated, incompressible mit {refevant for soil mechanies) can be recovered
by taking v, — & B - | with the resalts that G, = G i~ 2 = 1, e =26, and @~ 2.

i INTRODUCTION

There has been recurrent interest in the problem of interfucial fracture between lincar
isotropic and anisotropic clastic materials. Bonded matertals often fracture at or ncar the
interface (Drory ef af., 1988), theretore it is of practical importance to study the mechanism
of fracture. By considering the tully coupled lincar quasi-static clastic diffusive model of
Biot (1941, 1955) we can analyse the effect on fracture of the coupling of the pore pressure
or thermal ficlds (in poroclastic and thermoclastic materials respectively) with stresses
applied at infinity. Such materials differ from quasi-static clastic solids as a time dependence
is now introduced into the equations, for rapid loadings (compared with the diffusion time
scale) the material response is stiffer than for slower loadings. In the rapidly loaded
situations the pore fluid (in the poroelastic case) cannot diffuse away rapidly, so the material
has a stiffer response. The pore pressure (or temperature) boundary conditions on the
surface of the material can affect the response of the material, in particular with impermeable
boundarics the fluid can be trapped. or its diffusion hindered, this can affect the response
of the material. The quantities of interest, the stress intensity factors or pore pressure
(temperature) ficlds are also time dependent (or in steadily propagating cases, velocity
dependent).

To gain a fundamental knowledge of fracture in diffusive elastic materials an under-
standing of some model problems is required, in particular the singular stress fields and the
pore pressure (temperature) fields around a crack tip provide valuable information. In
previous works by the authors and others (Rice and Simons, 1976, Rudnicki and Kout-
sibelas, 1991) some model problems of fractures were considered for homogeneous
materials. [n Atkinson and Craster (1991) and Craster and Atkinson (1992) impulsively
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loaded and steadily propagating fractures were considered for fracture in previously undam-
aged materials. in some cases this led to situations where the pore pressure boundary
conditions on the crack faces were different from those on the fracture plane ahead. The
resulting stress intensity factors as functions of time or velocity were then analysed. In a
pre-faulted or damaged material. Rice and Simons (1976) and Rudnicki and Koutsibelas
(1991) considered the steady propagation of a fracture along a permeable or impermeable
interface.

However, in some situations where a pre-existing fault lies at the interface between two
different materials. say a saturated highly permeable sandstone overlying an impermeable
granite. such homogeneous models are inappropriate and our aim here is to investigate
such situations.

The thermoelastic case is of interest in industrial applications and the poroelastic case
in geophysics. In particular. geophysicists assume that there are pre-existing faults which
are impermeable to the diffusing fluid (Rudnicki and Koutsibelas. 1991) and often fractures
or flaws may lie at the interface between different layers of porous material. In industrial
situations. cracks at the interface between materials in integrated circuit boards are a cause
of circuit failure: this often occurs in an environment where significant heating occurs.
There have been to our knowledge no attempts to investigate the interaction between the
diffusing species and the solid elastic skeleton in such circumstances.

In lincar, isotropic clasticity the oscillatory stress singularity at the crack tip was
calculated by Williams (1959) using an eigenfunction approach. but it is usually more
convenient to analyse the isotropic elustic bimaterial problem using the analytic function
method (Muskhelishvili, 1953). The unphysical interpenctration of the crack walls close to
the crack tip was noticed by England (1965) and others. When the two materials are
incompressible the oscillatory singularity disappears; in the general case, the oscillatory
singularity can be rationalized as the conscquence of one of the materials having less
tendency to longitudinal expansion. The result is that surface wrinkling of the material
occurs, leading to the mathematical result that the materials appear to overlap near the
crack tip. The extent of this interpenctration zone varies widely depending on the specific
loading ; for tensile loading the zone is a small traction of the crack length. For a shear
loading, where the longitudinal expansion is significantly larger and the toading itself acts
to close the crack, the zone is consequently a large fraction of the crack length (Willis,
1972).

This interpenctration anomaly was initially thought to invalidate the analysis, the
apparent contradiction being rectified by the contact zone model of Comninou (1977, 1978)
who formulated the finite length crack problem as a distribution of edge dislocations along
the interface with auxiliary conditions. This reduced the problem to solving an integral
equation. This model assumes that the crack faces are in contact over a length / (the contact
zone), that in addition there is no stress singularity at the inner boundary of the contact
region and that the stress is compressive in this contact zone. This last condition was
checked by considering the sign of the stress singularity at the crack tip. The resulting
equations were then evaluated numerically by Comninou and analytically by Atkinson ana
Leppington (1983) and later by Gautesen and Dundurs (1987, 1988). In Atkinson (1982a, b)
bimaterial problems of semi-infinite and finite length cracks were analysed directly from
the governing equations using matched asymptotic expansions and Mellin transform tech-
niques. The small size of the contact zone for tensile fracture and the infinity of solutions
for the contact zone length suggest that a numerical method is perhaps not the most accurate
method tor this problem. That this problem has a unique solution for the largest contact
zone length is shown in Shicld (1982).

In the analysis by Atkinson (1982a) the Comninou mode! was analysed and the
following conclusions were reached : the oscillatory singularity at the crack tip disappears
in the contact zone irrespective of the boundary conditions at the ends of the contact zone,
the boundary condition of non-singular normal stress at the beginning of the crack tip zone
leads to an equation for the contact zone length with an infinity of solutions. This equation
is then evaluated to give the contact zone length consistent with only one contact zone. As
the method is independent of particular boundary conditions in the contact zone, alternative
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contact zone models (Atkinson, 1977a) can be considered : indeed in Atkinson (1982a)
other models are considered and shown to have the same energy release rate as the
Comninou model.

Recently there has been renewed interest in interfacial phenomenon with the theory
being extended to anisotropic elastic (Qu and Bassant. 1989 : Ni and Nemat-Nasser, 1991),
elastoplastic (Aravas and Sharma, 1991) and power-law (Champion and Atkinson, 1991)
materials. In linear elastic materials the analytical work has mainly centered on the integral
equation approach of Gautesen and Dundurs (1987). The theory can also be generalized
to dynamic interfacial fracture. e.g. Atkinson (1977b) and more recently Yang er al. (1991)
for anisotropic dynamic debonding.

The linear theories ol isotropic thermoelasticity and poroelasticity were introduced
and discussed by Biot (1953, 1941). in particular it 1s shown there that the two theories in
the quasi-static limit are mathematically equivalent. The theories introduce a coupling
between the pore fluid (temperature) and the solid elastic skeleton (material). The equations
of thermoelasticity are usually uncoupled due to the small coupling parameter (Boley and
Wiener, 1960). This is not the case for poroelastic materials and the fully coupled equations
need to be solved. Here we wish to consider the effect of both the diffusion of pore fluid
(heat) and the presence of an interface. The quasistatic case considered here excludes the
existence of dynamic effects and introduces time dependence into the otherwise time-
independent elasticity equations through the diffusion process.

The plan of the paper is as follows : we use a technique similar to that of Atkinson and
Craster (1991) and Craster and Atkinson (1992) to solve the problem for an impulsively
loaded semi-infinite crack between a porous clastic (or fully coupled thermoclastic) half
space and a rigid substrate. This solution is in many ways analogous to the “classical™
clastic solution 1 that it predicts interpenctration of the crack tuces. The diffusion of pore
fluid (or heat in thermoclasticity) results in 4 time dependent {(complex) stress intensity
fuctor. Both permeable and impermeable interfaces are considered ; the Comninou contact
zone model is then extended to cover these cases using a similar approach to that of
Atkinson (1982b).

The analogous steadily propagating fractures are also considered, the stress intensity
factors as a function ol velocity are derived and concise expressions for the near crack tip
pore pressure ficlds are derived. These fields are driven by the dilatation and as a consequence
are oscillutory. This result is of potential use in the verificution of the usual assumption
that in the fracture of thermocelastic materials the governing cquations can be uncoupled.

We follow the notation for porous elastic solids as introduced by Rice and Cleary
(1976).

The stress g, is given by

2Gv
(1—2v)

g, = 2Gl:,/+ d:;l:kk - 1/)‘511‘ (9)

/

and the pore pressure p satisfies the linear relation :
p = QX —2Quu. (10)

The governing equations, where we assume that there are no body forees or fluid sources
in the body, are as follows:

(a) The equilibrium equation,
J,,‘/ = 0, (l l)
(b) Darcy’s law, which relates the mass flux to the gradient of the pore pressure, where it

is assumed that density fluctuations away from the reference density p, are small (analogous
to the Fourier law of heat conduction for thermoelastic media) :
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g = —pokp.. (12)

and (c) the mass continuity equation (analogous to the entropy balance equation for
thermoelasticity) :

ém

e 1
= Guir (13)

Here m is the mass of fluid per unit volume = {p, and p, is a reference density.
The equations can be written for the thermoelastic case as

G - de o
;= 3 = - -, 14,1
GVu, + e =3 ) —f8, =0, AV = BT, 5 + ¢, = { 5)
and for the poroelastic case as
N G ep ) e
GV iu,+ (* ~—2xr)':"~ap‘i =0, FA —kQVp = —aQ 5 (16, 17)

Both sets of equations have the same structure, the equations are characterized by five
independent constants | in the poroclastic case these are G, v as in an clastic material, v,, B
to characterize the interaction between solid and fluid constituents and «k which characterizes
the permeability of the material and the viscosity of the fluid. Typical values for the material
paramcters arc given in Rice and Cleary (1976), for instance values given there (for
Berea Sandstone) are v, = 0.33, v = 0.2, B =0.62, G = 60 kbar, ¢ (for water-saturated
sandstone) = 1.6 x 10* ¢m s, (for Westerly Granite) are v, = 0.34, v = 0.25, 8 = 0.85,

= 150 kbar, ¢ (for water-saturated) = 0.22 cm s~ 2. The material properties of rocks vary
widely, particularly in their permeabilitics. The pore space can, of course, be filled with
more viscous oils or gases, hence it is advantageous to keep the theory as general as possible.
The following correspondence between the thermoelastic and poroelastic variables can be
deduced

¢, K “*t}
Ty

]
III

t
a= [, o=T, (18)
If we consider the coupled dilatation-diffusion equations (15) and (17) the coupling occurs
through the term x(de/dr) (for the sandstone above a = 0.79), although for thermoelasticity
the coupling can be much weaker, there may be cases where de/0t is large, particularly for
impulsive loadings, so we retain this term here,
In the case of saturated, incompressible constituents the variation of fluid volume
content is equivalent to the dilatation of the material. The equations above now reduce to
the simpler set:

Ge, de 1
U y }- 2
GVy; +(l 7 ~p; =0, ar Vie. {19,20)

These are the equations considered in the consolidation problems solved by McNamee and
Gibson (1960).

The fuli poroelastic equations can also be written in terms of {, the variation of fluid
content per unit volume, where { is related to physically more relevant variables by the
relation { = ae+p/Q; {16) and {17) can now be written as

2 G 2
GV, + =3 ) —aQC,; =0, cV“Cz-;. (21,22)



1468 R. V. CrastErR and C. ATKINSON

Similarly the thermoelastic equations could be written in terms of the entropy. These show
that the equations are characterized by the presence of a diffusion equation for the pore
fluid and the usual Navier elastic equation with a coupling term. Although (21) and (22)
appear superficially to be uncoupled it is important to realize that the boundary conditions
are always given in terms of the stress, displacements or pore pressure, the variation of fluid
content is not a usual boundary condition. The coupling is therefore just transferred to the
boundary conditions.

2. FORMULATION

In order to solve the coupled set of eqns (21) and (22) we introduce a general potential
representation which reduces to the McNamee and Gibson (1960) potentials in the soil
mechanics limit. Taking the divergence of (21) gives

Vi(2Gn,e—2Q3) = 0. (23)

hence a vector «g can be defined such that

26 —w
Gl B v ,
¢ 1Q< 5 gg+r1.,c>. (24)

where  is harmonic and w is an arbitrary (non-zero) constant. This in turn implics, from
(21), that

Vi = ¢, —wV-i,. (25)

The notation ,i denotes differentiation with respect to x,. Solutions are given by

= (b‘l + (xk (//k).: + ‘U'//i- (26)
Then (24) implies in general that
4(1 - , d ,
267, V36 +G M)v-w —aQl, Vi =0, % _ v (27,28,29)
(1-2v,) = ot
Choosing w = —4(1 —v,) reduces the problem to solving the set of equations considered

in Biot (1956). The completeness of this representation is shown by Verruijt (1969):

avig
Jt

=V, Vi =0. (30, 31)

For plane strain we take ¢ = (0, ¥, 0) to get the following expressions for the variables of
interest :

o Gl éo oy
= - ) — 5 = ) -_ u N 32
=3k +y FPA Jy +) ay B —dv)y (32)
G _, )
C = E_V'(ﬁ, e= V.¢_2(l —ZVU)I//._‘., (33‘ 34)

P = g_f_'lvl¢+2aQ(l —2vu)'//._vv ”\',r = ZG((tb.\'y"*'.V'p__r,;‘_(l _zvu)w_r)' (3Sv 36)

O = 26(_}"1",“ - ¢,yr - 2\'ulll.‘.), Ty = 26(}"/’._»'}' - ¢..<,\' - 2(l - vu)w.,")’ (37‘ 38)
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These representations can be compared to the displacement functions for soil mechanics
(the saturated. incompressible limit of the poroelastic theory) derived in McNamee and
Gibson (1960). Taking the saturation limit implies that { = e and v, — ! and then by
defining

¢=—E and ¢ =(0,5,0), (39)

we recover the equations considered there. Note that here we have not used the rock
mechanics convention that compressive strains are positive. This convention was adopted
by McNamee and Gibson (1960) and the correspondence above is exact when this is taken
into account. The McNamee and Gibson potentials were limited to solving normal loading
problems, taking the soil mechanics limits before applying the potentials to specific problems
limits their use.

The above potentials are identical to the specialized tensile potentials introduced in
Atkinson and Craster (1991). if we take

l ¥
(1=2v) 0y~

G
b= E—f'(b-i-‘{’ and ¢ =

The advantage of these potentials was the simplified structure on y = 0; the restriction was
that the undrained shear stress was zero along the x axis. This is the same restriction that
applies to the McNamee and Gibson potentials.

To proceed we assume all the field variables are zero for ¢ < 0 and Laplace transform
the governing cquations (30) and (31). We also introduce the following scaling, which scales
the Laplace transform variable s out of the governing equations, placing the s dependence
in the boundary conditions:

P 1.2 5 1/2
X=x (() and Y= y(;) , (40)

s\2 AL
61’/’(""! y' S) = T‘lj(Xv Yﬂ“) E ) C(x,)" S) = V(X, sz) z ’ (41)
s\2
w(x, y,5)=U(X,7Y,s) and p(x, y,5) = P(X,Y,s) (E) , (42)
5 1,2 ) 1/2
P(X, Y,5) = ¢(x,y,5) (E) and Y'(X,Y.,5) = y(x,y,5) (;) . (43)
The governing equations become
Viry =0, ¢ = Vivg', (44,45)
. a* R
here Vi, = ==, + 2. Now, taking the Fourier transform with respect to X i.e.

a ¢

PEY.5) = j O (X,Y,5)e*vdXx, (46)

gives from (44) and (45) the equations
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&N N &N
<—~.~~—r )(dY; - )5 (3, ¥,5) =0, (a‘,:: -3 >l// (s.1.5) =0, (47.48)

where [* = 74 1.
The solutions to (47) and (48) which decay as ¥ — x are

YEY.s)=B(Esye B @AY = AEDe e d(iye T (49)

A

we take |&| = &L L7 with both square roots real and positive for £ real and positive. The
functions ¢! ° have branch cuts from i0; to Fix. [ is defined as

=& 1, (50)

I". defined to be that branch of the square root with positive real part, can be factorized
into a product ' [ [_ where I', = (E+0)' e they have branch cuts from Fito Fix.

The potentials (49) are then substituted into the potential representations ; the constants
A 4., B, need to be deduced from the boundary conditions. The transformed rep-
resentations are given in Appendix 3.

3. PERMEABLE INTERFACE

3.1. Solution

For a fracture at the interface between a rigid substrate and a poroclastic material the
problem is not symmetric, so we cannot appeal to symmetry to fix some of the boundary
conditions. If we take the problem where the interface and the crack faces arc permeable
thenony =0

p=0Vyx (51)
Ahcead of the crack tip, the materials are bonded together, hence there is no displacement
u, =0 and wu,=0 forx>0, (32)

and on the crack faces we take an internal loading which may be shear or tensile loading
or a combination of both. For mathematical convenience we take the loading to be
o, =—1,"H(), o,=—1¢""H(t) forx <0, (53)

i.c. we are considering a crack loaded with a preseribed internal stress. Physically this
corresponds to the difference between an applied far ficld loading and o resistive stress.
Although, clearly, these loadings are idealized, more general loadings can be gencrited by
superposition. The notation t, and 1, is used for the crack loadings to indicate mode 1 type
tensife loading and mode 2 type shear loading (in homogencous media) respectively. Due
to the inseparability of the problem into purely tensile and shear problems, we expect the
near crack tip ficlds to be characterized by a complex stress intensity fuactor and the leading
singularity to be oscillatory.

Laplace transforming the boundary conditions and scaling as above, the non-zero
boundary conditions become

12
Tyy = —e—e¥, Typ= 5" for X <. (54)
s S -

and a, = a(s/c)'* is the scaled value of a. Working in the scaled coordinate system is
convenient as the Laplace variable “'s™ is isolated in @, and it is therefore casier to analyse
the asymptotic behaviour.
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As we have mixed boundary conditions we define the following bhalf-range Fourier
transforms.On Y=0, X >0

T, =J T, (X,0,5)e*¥dX, T, =J Ty r(X,0,5)eR¥dX, (55.56)
0 [}

andonY=0,X<0

0

0
U_ =J‘ U,(X,0,5)e"" dX, V_ =J‘ U,(X,0,5)e** dX, (57.58)

—x -

and for the pore pressureon ¥ = 0

P = f P(X,0,5)e"*dX. (59)

—-

'Using the above definitions the Fourier and Laplace transformed boundary conditions
become::

172
T.a,c

Trr(6.009) = T = sz, Terl€.009) = 10~ aitee s,

sV (1 +iéa))’ (60)

and U,(8.0,5) = U_, U:(5.0,5) = V., P&, 0,5) =0.

The notation U, (€, Y. s5) is used to denote the Fourier transform of U (X, Y, 5) with
respect to X. For the permeable interface we take 7 = 0 on the X axis which when used
with eqn (A39) gives a direct relation between A4, and B, :

B\|§| = 74, (61)

The displacements and stresses on Y = 0 give theTollowing relations between the constants :

U_ = —ié(d,+A4:), V.= —|E|d,~TA;—(3—4dv,)8,, (62, 63)
Foo D A, A+ 2 B (64
+_—Sl,2(|+iéal)— (é( |+ 2)+ ( _vu)lél l)v )

12
1, = 2 2GiE(A, €|+ T A+ (1 —2v)B,). (65)

T (1 +icay)

The above is a full matrix Wiener-Hopf equation which can be written as:

1,a,c'?
(n) s (+iga) | 2G)¢| <2ic'ﬁ(l—vu) z() )(V) 6
0.)7 e |TRAO\ —ze)  2gia-wy\v ) O

s (1+iay)
where we have defined (&) and Z(&) to be
Q) =& —(TIEI+(3~4v)n), Z() = E(C=1EN+ L1 —2v,).  (67,68)

By taking the combination T, +ir, (or alternatively we could take T, —it,) the matrix
problem can be reduced to the following functional equation:
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_ way 26V +U)S =
T. +it, (tica) a0 20(1=v)) W(S). (69)

This conveniently reduces the problem to a more standard form ; with t, and W(Z) above
defined to be

YA

¢ . . 1€l l ! 522
ro=?‘f(f1+lf:)~ WE)=-— - (m"*m(rld—s ))- (70,71)

o

3.2. The Wiencr—Hopf technique

[n order to utilize the Wiener-Hopf technique, e.g. Noble (1958) we need to arrange
the “plus™ and “minus™ functions in such a way as to have a functional equation which
consists of a “minus” function equal to a “plus™ function with a common region (or line)
of analyticity. First, it is necessary to split the functions W(&) and Q(&) into functions
which are analytic and non-zero in the upper and lower complex ¢ planes respectively. The
functional equation (69) is then split into the standard Wiener-Hopf form: a “plus™
function and a “minus” function. When these are equated they are by analytic continuation
equal to an analytic function which, in general, is then deduced using the extended form of
Liouville's theorem.

The product splits for () and Q(E) are performed in Appendix | When these
functions arc split and the simple pole at i/a, is subtracted out, the functional equation (69)
becomes

i
n,u,Q,( >
<,. . Tud )Q‘ a
1, +it, R

— e, . s + F v L e
(1 +ay)/ W, i .
W - U +ida))
«,

To L2, -
_ (Vo +iU262i(1-v)W. T\,
- - . :
(1+ia)W,

i
a,

=ZX©). (72

where (&) is by analytic continuation an analytic function everywhere in the complex ¢
plane. The asymptotic behaviour of W, () and Q. (&) are required as |{| — c0. From
Appendix I, W, ~ O(Ey'?), W_ ~ O(Z"**™) where m = (1/2ri) log (3~4v) and
Q. ~1,0.~-Q,

We assume that as || —» o0, U_ +iV_ ~ O(EZ"* ") which implies that the dis-
placements are O(r"~ ") as r — 0. For non-singular displacements (singular displacements
would be unphysical) we require n > §, hence the stresses are O(r"~**) and so T, +it, ~
Oz~ 17).

In the limit as |&] — =0, using the asymptotic results derived above, it is clear that (&)
is bounded at infinity and tends to zero, and therefore from Liouville’s theorem is identically
zero everywhere.

We cun therefore deduce that

(73)

This gives us the transformed stress intensity factor. The complex power of the transform
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(m) is the same as for the elastic problem with drained coefficients. This implies that the
fluid diffusion does not alter the nature of the stress singularity. A similar result is found
in Atkinson and Craster (1991) and Craster and Atkinson (1992). In the problems con-
sidered there the material was homogeneous so the usual square root singulanty was
recovered ; in bimaterial fracture the singularity also depends on the Poisson’s ratio. It is
to be expected that the drained coefficients appear in m, as the interface is assumed to be
permeable so the crack tip is always effectively drained : an identical result occurs in the
impermeable case. Section 4.1. If the drained Poisson’s ratio v = { (an incompressible
material) the oscillations disappear. However, this case is of little interest hereas v €< v, <
{ and so we then recover an incompresstble elastic solid.

3.3. Near crack tip behaviour

In order to identify correctly the crack tip intensity factors it is necessary to evaluate
the stress and pore pressure fields in the neighbourhood of the crack tip.

For the stress fields as r — 0 in the neighbourhood of the crack tip, the stress field is
the well known elastic solution. Note here we have a rigid substrate so the usual solution
is somewhat simplified. From Williams (1959), the Airy stress function ¢ for the elastic
material is given by

¢ =Rerr* " (Asin (A+1)8+ Beos (A+ 1)0+ Csin (A—1)0+ Dcos (A—-1)0), (74)
for 0 < 0 < n where 4 = n+!—m, ninteger or 4 = n. A concise method for deducing the
constants is given in Hein and Erdogan (1971). Taking n = — 1, which gives the finite

displacements and dominant singular stress field, it can be deduced using the analytic
function or Williams (1959) method that

KW +iKP (1)

o, + iO',.‘_,v lyog =~ W((y?_rAt)ﬂ”-i_ rec i, (75)

where
;= Il 31-4 76
E= 45 0g (3—4v), (76)

K'P'(H)and K (r) are the mode | and mode 2 stress intensity factors respectively for the
permeable interface; it is convenient to combine them and consider the complex stress
intensity factor K®™(1) = K () + iK' (1) which is a function of time due to the diffusion
process. The superscript (p) is used to distinguish these stress intensity factors from the
impermeable cases [with superscript (im)] derived in Section 5.

Laplace transforming (17) to get

sp—wQVp = —aQsé an

we can deduce that in the neighbourhood of the crack tip (r — 0) the pore pressure is
governed by

Vip=0, (78)
which for the permeable interface has to leading order (i.e. as r — 0) the solution
p=KfP(s)rsind for0<d<m, (79)

i.e. a simple eigensolution. The dilatation (to leading order) is
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(1=2v) _(1=2v)
m‘a'z_c;—‘(au'{_cyr) = G

(B +0*(=")), (80)

~

the * being used to denote the complex conjugate. We therefore find a particular solution
of kV*p = x5& which satisfies the boundary conditions.
In the above we have used the complex variable notation as in Muskhelishvili (1953)

O() =e ™z Y a0, (81

n=0
the only term we are interested in here is that with n = 0, then taking

K#

= 330 " eosh (70)” 82)

dg

leads to

(1 —2v)asetd—mph?

. o) el -3y _ Libf2 W
G0 ot G (1 T80T R(KP (s)r*(1—ie)(e e’ )+

(83)

p~ R (s)rsin0+

This sccond term is driven by the dilatation and consequently is also oscillatory. Note also
that some care is required in interpreting the above result for the pore pressure. The
similarity variable for the diffusion equation is r*/¢ and our method is an expansion in small
r for ¢ fixed ; there is a non-uniform limiting process if the limit as ¢ - 0 is now taken. Such
a complication does not arisc in the expressions for the stress intensity factors.

ft is our aim to find the Laplace transformed stress intensity factors K™(s) =
K (s) +i1KP(s), K™ (s) and then invert the Laplace transforms, e.g. (92) and (93) numeri-
cally.

4. IMPERMEABLE INTERFACE

4.1, Solution

If the interface is now taken to be impermeable, the above analysis can be repeated ;
the only boundary condition which changes is (51). The boundary condition on the pore
pressure becomes

p
— =0 forallxony=0. (84)
dy
We use the general potential representations derived in Section 2 and the formulae of
Appendix 3 to give us directly that

&8, = TijA.. (85)

The other equations relating the constants 4, 4, and B, e.g. (62)—(65) remain unchanged.
Solution of the resulting matrix Wiener—Hopf{ equation follows in an identical fashion
leading to the following functional equation

Tod, . 2G(V-+l0~)é

Urizay a0 2i(1 = v) W(Z). (86)

T, +if, -

We use overbars on the functions to denote those which correspond to the impermeable
interface. The functions (&) and W(&) are given by
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s BRI N N I (a8
U == P+ Gdn - WO =5 - gk ama . (87.89)

The product splits for these functions are sketched in Appendix 1. We can subtract out the
simple pole at i 'a, and using the edge conditions and Liouville's theorem on (86) as before

[ef. (72)] gives
f(;(“Q* (L>
a,

T__ .o Todd )Q‘ +
*+lt*—(l+i§u|) ./ _
Wl — Nl +iiay)

d,

i
“’., +i[" )2GE2 '(l , )ﬁ/ Tn(llﬁ#(;.)
= - - V' - - 7‘\’_—'1 Yy R + *‘~,—hl—’ _ 0. (89)
e _ (i
(I +ica) W, <a>

Using the asymptotic behaviour of the functions gives the following expression for the near
crack tip behaviour of the stress ficlds
) i
it 1 -
o,

T,+it, ~ oo 08 1 (90)
ﬂq( ' )
o,

The expression is similar to the permeable result (73), the only difference is in the functions
1, Q. In the previous works on diffusive clastic fracture Craster and Atkinson (1992) and
Atkinson and Craster (1991) the stress intensity factors for fracture in undamaged
muaterials were found. In the cases where the fracture plane was cither completely permeable
or impermeable, the only difference in the stress intensity factors was in the split functions,
i.e. N, (i/a,) replacing N, (i/a,). The functions N, and N, reflected the interaction of the
applied stress with the pore pressure boundary condition on the crack faces, hence they
also oceurred naturally in the mixed pore pressure boundary condition cases. In the cases
with permeable/impermeable crack faces (N, /N, occur) an analogous correspondence may
occur in the interfuctal mixed pore pressure boundary condition cascs. These cases are
bricfly investigated in Appendix 4.

The near crack tip ficlds can be evaluated in a similar manner to that in Section 3.3,
In the impermeable case the clastic field is once again that identified in Scction 3.3. The
pore pressure ficld at the crack tip is governed by V5 = 0. The asymptotic behaviour of
the pore pressure can thus be identified as

7 ~ po(s) + K§™ (s)r cos 0. o1

5. CRACK TIP FIELDS

Inverting the asymptotic transform results we can match these with the appropriate
asymptotic results from Sections 3.3 and 4.2 to identify the intensity factors, e.g. (75). In
the neighbourhood of the crack tip we can invert the Fourier transformed stress intensity
factors (73) and (90) (i.e. inverting in space) using the Tauberian results in Appendix 2 and
recalling the scaling introduced earlier, we find from (75) that the purely Laplace trans-
formed stress intensity factors arc given by
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Q (L)a(l:-m)
+ a,

RP(s) = 2n)' *(z, +ity) ——— (92)

1 .
s, (—)7(§+le)
a,

N (93)
sJ. <i>-,'<%+ ic)
a,

the superscripts (p) and (im) identifying the permeable and impermeable stress intensity
factors respectively. For comparison with previous works on interfacial fracture these
results are written in terms of ¢ = im; by noting that y(! +ig)7(}—1ie) = n/cosh (ne) from
Abramowitz and Stegun (1970) these results can be put in @ more standard form. The
functions J, (), J, (&) are defined in Appendix 1, y(z) is the gamma function as defined in
Appendix 2. In particular we can deduce that the complex stress intensity in the elastic case
for the loadings we have chosen is given by

R™(s) = 2m) "2 (r, +its) ——

(1:2—18)

KO®) = 2n)'?2 (r.+lr),(( T HO. (94)

Using a non-dimensional time scale ¢ = tc/a’ we can invert the Laplace transformed
complex stress intensity factors (92), (93) numcrically for all times. We take

12 e

() = Iy
K1) = (2n) (r,+lt)( 4l

S, (93)

with the time dependent scaling factor given by the following inverse Laplace transform,

NI e dy Tor Y(g) > 0. (96)
| 10 {
(1)
s

Graphs of the real and imaginary parts of f(¢') and the modulus (using the non-dimensional
time scale t* = t¢/a’, for v = 0.2, v, = 0.4) are shown in Figs 1-3 respectively. The graphs
also contain the equivalent results for the impermeable case shown as a dashed line; in
Figure 3 a small time asymptote is also shown. This small time asymptote is deduced using
an heuristic argument based on the energy release rate, see below. The time dependent
scaling function (96) and its impermeable analogue contain all the time dependence and
iltustrate how the classical elastic result is altered by diffusion.

The Laplace inversion (96) is performed numerically using an adaptation of the Talbot
(1979) algorithm which is briefly described in Appendix 5. An alternative method is to
collapse the inversion integral in Laplace transform space around the branch cut along the
negative real axis and evaluate the resulting definite integrals numerically. The two methods
produce results which agree to within 1%, although the inversion becomes particularly
difficult for short time intervals due to the extremely awkward behaviour of the integrand.
In particular the function J, (¢) does not tend to a limit independent of the argument of ¢
(although it is analytic) as ¢ — 0. The behaviour of J, (&) is discussed in some detail in
Appendix 1.

Forlarge times ' — o0, s — 0; using the asymptotic results from Appendix | we recover
the elastic result suggesting that the long term behaviour is essentially elastic.

e ()
o,
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Real part versus time

1 v . - r . v

0.98

0.96

0.94

0.92

09

Real part of f(1* )

0.88

0.86

0.84

082} 1

A "

0.8 A e e 4,
103 104 103 102 10! 100 10! 102
non-dimensional time scale ¢

Fig. [. The real part of the complex scaling factor versus a non-dimensional time scale for v = 0.2,
v, = 0.4,

We can checek the above results using the same physical argument basced on the energy
release rate as in Craster and Atkinson (1992), suitably adjusted for the interfacial problem.
We visualize the crack tip as a drained clastic inclusion (with Poisson’s ratio v) in an
undrained clastic material (with Poisson’s ratio v,). We can analyse this using the encrgy
release rate. Consider an inclusion with shear modulus g;, Poisson’s ratio v, embedded in a
material with shear modulus g, Poisson’s ratio v, bonded to a rigid substrate, c.g. Fig. 4.
Under conditions of plane strain, we define K, K, to be the complex stress intensity factors
associated with the inner and outer materials respectively. Then, provided the inclusion is
sufficiently small, the energy release rate G is given as

Imaginary part versus time

0.4 . . - v . \
035}t .
03 |
s 025 ]
‘s
g
S 02 i
g
s 0.15
E 5 -
0.1 ]
0.05 E
0 " 2 " x —izaao. “
105 104 107 102 10 100 10! 102

non-dimensional time scale t°

Fig. 2. The imaginary part of the complex scaling factor versus a non-dimensional time scale for
v=02v,=04.

SAS 29:12-8
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Modulus versus time
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Fig. 3. The modulus of the complex scaling fuctor versus a non-dimensional time scale forv = 0.2,
v, = 0.4

. IKE(=v) K- (
I R = 7
o 4y cosh? (ne) 4;:(,cosh (nf“) o7

Here &,, & are given by (76) with the outer and inner Poisson’s ratios respectively. The
energy release rate is calculated as the combination of the work done by the mode 1 and
modce 2 stress intensity fuctors, e.g. Malyshev and Salganik (1965). In physical terms, for
small times the local energy release rate at the crack tip must be the same as the encrgy
release rate seen in the far field. We can make this rigorous by using an invartant integral
(Atkinson and Craster, 1992). From (97) we find

. {3 4&!0)(1:—_\)2 I
”‘""((3 )1 =w) u.,) [l o%)

Letting v, = v, v, = v,, i, = u, = G, taking K, = K" or K" and

UNDRAINED PORQUS ELASTIC MATERIAL
DQA!NED INCLUSION

Fig. 4. For short time intervals the crack tip can be visualized as a drained inclusion embedded in
an undrained material,
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12~ia,

K, = 20"z, +its) o

Ty 7O ©9)

we can deduce, for both the permeable and impermeable cases, in the small time limit

N (G=4v)(1-V) '”(eosh(neu))”2 :
'f(’)'*<(3-4v)(n—vu)> cosh (m) ) 1) 1

with g, = 1/27 log (3 —4v,). The result (100) was checked against the numerical results and
although the small time limit is difficult to evaluate, an extremely good agreement was
achieved ; this asymptotic result is shown as the straight line in Fig. 3. The energy release
rates as functions of ¢’ can also be evaluated from (97)

K ()] (1—v)

Gmy ey
) 4G cosh? (ne)

(1o01)

these are shown (normalized by dividing through by the elastic energy release rate for a
homogeneous elastic solid, i.e. G, = 2|(t, +it;)|’a(l —v)/4G) in Fig. 5. Also shown there
for comparison are the normalized encrgy release rates for the homogeneous (unmixed)
cases using the stress intensity factors given in egns (85), (88) of Craster and Atkinson
(1992). As ¢ — 0 the curves for the impermeable and permeable cases tend to the same
limit, this is because in the unmixed cases the small time limit for the stress intensity factors
are identical. This can be shown by considering the inclusion argument above. It can be
clearly scen that for the values we have taken (v = 0.2, v, = 0.4), the interfacial energy
release rate results for both permeable and impermeable interfaces are, for most time
intervals less than the equivalent result for the homogeneous material. For very small ¢ the
situation reverses with more energy release rate for the interfacial cases, in this limit the
differences are small.

0.95

09

0.85

038

0.75F:

0~7 n A A A A A
103 104 103 102 10! 100 10} 102

Fig. 5. The energy relcase rates (normalized as in the text) as functions of * = tc/a’ for Poisson's
ratios v = 0.2, v, = 0.4 the curves correspond to (a) the pcrmeable homogeneous, (b) the permeable
interfacial, (c) the impermeable homogeneous and (d) the impermeable interfacial cases respectively.
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6. CONTACT ZONE

We now proceed to consider a Comninou (1977) contact zone model. In this section
we will deal with the permeable interface only ; the impermeable results can be deduced in
a similar manner. The contact zone model corrects for the interpenetration of the crack
faces; the analysis follows the analytical approach for linear elastic interfacial fracture of
Atkinson (1982a,b).

Note we here work entirely in the Laplace transform domain, thereby removing the
time dependence explicitly from the equations.

Considering the near crack tip displacement fields. for the permeable case we can invert
the asymptotic result for the displacements from (72) to get

1
o (0) _
(v, +1ty) (“l (3—-4v) e (= x)""OH(—x)a" "
s (1) 26 (+ie)y(i+ie)

a,

l?:+il?l IH:K =

(102)

This reduces to the elastic case in the appropriate limits. We find the usual situation for
interfacial fracture, the jump in normal displacement across the crack changes sign infinitely
often leading to the non-physical interpenetration of the crack faces. Comninou (1977)
suggests that this can be corrected by assuming that the crack faces remain in contact over
this region.

We let /, denote the length of the contact zone, and use polar coordinates centered on
the crack tip, with ¢ = 0 being the line ahcad of the crack, i.c. Fig. 6. Then the boundary
conditions become, (where we remind the reader that &, = @, cos@on ) =0, 7) on 0 = n:

Gy=0 forO<r<l, Gp=— T\i e forl,<r<oo,  (103,104)

G, = —fsic"/" for0 < r < oo, (105)

and on 0 = 0 the same conditions as before (Section 3.1),
u, =1d,=0, (106)

and on @ = 0 and =, for the permeable interface, p = 0.

The length scale of the loading, a, is assumed greater than the contact zone length, /,.
This length, /,, for the elastic problem is determined in Comninou (1977) by determining
the loading length scale a such that oy|4., has no stress singularity at the inner boundary
of the contact region and is compressive for 0 </, < a. The contact zone length for

DIFFUSIVE ELASTIC MATERIAL
Gy, B,

CONTACT ZONE

RIGID SUBSTRATE
Fig. 6. The coordinate system for the contact zone.
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particular materials is determined in an inverse manner ; the length is specified and then the
ratios that the elastic constants must have is calculated.

These conditions are not assumed a priori here [or in Atkinson (1982a, b)). This is a
considerable advantage over the numerical methods.

Now let the solution found earlier in our Wiener—Hopf analysis be the outer solution
[which we shall denote using a superscript (0)]. This will be valid for distances é much
greater than /,, the contact zone length, from the crack tip at r = 0. This earlier “‘outer”
solution is clearly non-physical close to the crack due to the interpenetrating property
previously referred to. Therefore we need to correct for this behaviour. We recall here that
in this section we are dealing with the permeable case. To proceed we write

g,=a"+a, ¢,=60+e, p=p"+5", (107)

where these outer solutions (o) are the solutions to the problem posed in Section 3.1. The
boundary conditions for the “inner” problem [denoted by a superscript (i)] become on
0=nm:

af' = —a? for0<r<l, G =0 forl, <r< oo, =0 for0<r< .
(108, 109, 110)

Defining new coordinates (R. 0) by
r=0LR 0=0, (n

i.c. scaling on the length scale of the contact zone we therefore rescale the displacement,
stress and pore pressure ficlds according to

[7(') =/:920” (}5;) =1I.”2TU' ﬁ(i) =Il-l/21’)_ (ll2)
The Laplace transformed diffusion cquation becomes

hQ

sP-5aQ0,, = —<5V?P, (113)

where the differentiation is now with respect to (R, 6). In the limit as /, — 0 the pore
pressure separates out from the dilatation. Hence the governing equations become

ViIP=0 GVU+(G2) -af, =0. (114,115)

From the asymptotic behaviour of the pore pressure (Section 3.3); £ ~ KP(s) R/} sin 6.
Therefore to leading order the pore pressure is zero. Hence the situation is analogous to
that considered in Atkinson (1982a, b) therefore we just sketch the solution here.

Applying this change of variable (111) and the scalings (112) we can deduce that on
O=rn

Uy =070 forO<R<I, Tw=0 forl <R < o, (116,117)
Two=0 for0<R< o, (118)

andonf =0
Uy = Uz =0. (119)

From (102)
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(t,+ity) @/ (3-4v) ¢

1-12-(10)___\}{ — - 2
Lo s i\ 26 (CFir(l+ie) (120
j- —
a,
The scaled displacements satisfy, to leading order. the governing equation
. G .
V-U+ ———E, =0. 12
G b,+(l_2") . (121)

One natural method for solving bimaterial problems is to use the Mellin transform for the
full poroelastic equations. This would lead to a differential difference equation and so it is
easier, for the full problem, to use the Fourier transform as in Section 3.1. However, on
the scale of the contact zone, the pore pressure equation separates (to leading order) and
we are left with the usual Navier equation (with drained Poisson’s ratio). We now solve
this problem using the Mellin transform which is defined as

Alg) = M(L.¢) = J AR)R? 'R, (122)
0
and the inversion formula
. l ke
HR) = oy A(g)R " dq. (123)
2mi Jo o
where ¢ is chosen such that R YA(r) is absolutely integrable on (0, ). We proceed by

defining the following transforms (which are unknown functions of ¢) :

MR Tolyr = F = J R'"'Ty(R,0) dR. (124)

i}

This function is analytic in some right half plane for R(¢) > ¢, where ¢, depends on the
nature of Ty as R = 0 and

»‘R'Un = ! aUu) -
MR )N =G =| R[S AR 125
[(R (7‘R)|u;,, G j ((’IK (123)

which is analytic in some left half plane for 9(¢) < ¢, where ¢, depends on the behaviour
of ¢0,/0R as R — . The following functional equation can be deduced

I E E*
- .- - = — f 2
@) <G a+, ((:1+'§+i1;) T g+ -—it:))) Foto. (126)

with the * denoting the complex conjugate and

(1+(3—-4v)7)
G(cos (2qm) + - (374 ) .
T@) = = \ysinqn) (127)

This is identical to the functional equation deduced in Atkinson (1982a,b) with appropriate
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changes made for the rigid boundary and the particular loading considered here and £ in
{126) defined as

Q,(L) o
_(rl"l"if:) a, (3._4V)1/~1ll¢al,..—u

: 128
s ( i ) 2Gy(t+ie) (128)
Jo—
a,
Splitting T{g) into a product of analytic functions we find 7(g) = T, T_ with
2nG 27 99(2¢+3)
= . : . 129
@ 4(1—v) y(g—ie+ Dy(g+ie+ D (129)
_ 1q+ 2 2 2
T (1)- ¥(=29-2) (130)

E—g—Yy(—g—ie—1)’

Then, as in Atkinson (1982b), the functional equation (126) can be recarranged as the
following functional cquation:

E* E
T ()G (Q+H(T (q)-T (- ))7(1+, 2(q+ +u)(T ()=T (=ie=3)
~F, E* , E o
= T, —~2(q+%_i‘5T,(m-—) 5*("('1”:";—?57“( ll.—z)—-l(q). (|3|)

The asymptotic properties of T, can be used together with Liouville's theorem to deduce
that /{g) =

From Atkmson (1982a) the stresses ahead of the fracture can be evaluated from the
Mellin transform

4(1 —vje'"

MR (Tro+iTw)))p=0 = (T4 O —dv) e

if, (), (132)

and the stress in the contact zone from (124). Hence we can deduceon 0 =, R« |

i
. (1-2 )Q*(a-{)(a)’” i, +ita) (1,)‘
T, — R

WETIITY T s \R i " \4a
J+ ;"y(g'!"“:)
1

Similarly we can deduce a result [cf. (2.26) of Atkinson (1982b) from (132)] for the stresses
on @ = 0 from which it would initially appear that the stresses are still oscillatory. However,
from (107), the oscillatory parts cancel out. If we now consider the stress in the contact
zone (133) we have to-determine the length over which it remains compressive and, for the
Comninou model, for which Ty is bounded at R = 1. We can translate these results into
the notation of Atkinson (1982b) by taking

(133)
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a' 3“‘Q,<—L>(ir.—13) al':_"Q,<—l->(iT1—fz)
a, a

P=3 , . 0=%W : L (134
7(3+ig)sd . (L> 7(d+ie)s/, <L>
a, a,

then the condition becomes

(1;) —sQ)cos (e log%‘z)ﬁ»(g +8P> sin <£ logt—a> = 0. (135)
< 1 - !

[t is clear from this that there are an infinity of contact zones lengths, however only one
will satisfy the subsidiary condition that the stress be compressive along the contact zone.
The above is then solved by

cos (slog;—‘—j = —(g +£P>/(Q:+PZ)":(82+})“. (136)
\ 2
. du P v otz .
sin (a log [) = (2 - s:Q>/(Q“+P“)"'(€.‘+ HEES (137)
|

In the case of pure tension, e, v, = 0, from the previous sections, it is clear that for small
times the diffusion process induces a shear component, this has the effect of lengthening
the contact zone. As in the clastic case the above relations can be used with the results from
Atkinson (1982a.,b) to show that the encrgy release rate for this model is identical to that
obtained by considering the case with the oscillatory singularity as in Section S.

The above matched asymptotic expansions are more accurate provided the contact
zone length is smadl, for this we require that the contact zone is due to the interpenctration
cffect and not due to a purcly shear loading. A shear loading acts to close the crack the
contact zones are due to the loading, and the contact zone length may then be large. Hence
our results above are valid, by analogy with Atkinson (1982b), when P > @ this is true in
the case of pure tension.

Due to the shear component induced by diffusion we can expect a larger contact zone
tength to be induced. We can see this from the above, taking v = 0.2 and v, = 0.4 we plot
[,Ja as a function of the non-dimensional time scale ¢ in Fig. 7. The complex gamma
function is evaluated numerically using an algorithm described in Lanczos (1964). From
this we see that initially the contact zone size is large. This then monotonically reduces to
a standard elastic result.

In the impermeable case, the asymptotic behaviour of the pore pressure is that £ ~
112 py(s) and hence to leading order this does not affect the above analysis, so we can deduce
that

(138)

)
R U ) "\a, (fx)”m i(z, +ity) (I_l>

l-:"—*—__ 7N 4
(=n J. (i>~,'<é+ie) ¢
a;

7. STEADILY PROPAGATING FRACTURE

As in earlier papers by Craster and Atkinson (1992) and Atkinson and Craster (1991)
the problem of steadily propagating fracture can be considered. This probiem is considerably
simpler as the explicit time dependence is removed. If the crack propagates at a steady
velocity ¥ then the field variables have the dependence on x, ». t g = g(x— V1, y) with g
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x10°% The contact zone length for the permeable case
25 v + v v -

Non-dimensional contact zone length
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I

Fig. 7. Graph of the non-dimensional contact zone length /,/a as a function of ¢ in the permeable
interface case for v = 0.2, v, = 04.

representing any field variable, i.c. we consider a steadily translating coordinate system,
Hence the explicit time dependence is removed as &/0¢ = — F(0/dx). The potential equations
(30) and (31) become

oV

VW =0, Vo= -V
¢x

. (139, 140)

We can remove the explicit velocity dependence by adopting the following scaling

V V V
X o= :\” Y= . y, UX,Y)= : u,(x, ), (141)
Ox. ) = X Y), Wlxp) = SWXY), (142)

and leaving the other ficld variables unchanged. For the interfacial problem, a similar
analysis to that performed above can be repeated. The details of this we shall omit here
and merely quote the results. We take a stress loading similar to that adopied in the
impulsive case which now moves with the crack and decays as X — —oc, i.e.

ayy+ia'\ry = —(t,+i1’:)€'r““‘. (l43)
where a; = aV/cisa non-dimensional length scale. If the boundary is permeable the complex

stress intensity factor as in (75) is

SAS 1%:12-C
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K® (V) =

—F—K..
iw-<'—>n.,
a,
-(2)
g

Kiiml( V) = Ke-

l(D + <“1_>Ql)
a;

with the elastic result (with drained parameters) as

K,

(27[) I/Z(rl + i‘t:)(l“ 2 -

7(3 +ie)

(144)

(145)

(146)

The functions %. ¥. w. @ and Q, are defined in Appendix 1. Briefly, the oscillatory behaviour
is unchanged and the complex power depends on the drained Poisson’s ratio as in (76). The
vclocity dependent stress intensity scaling functions e.g.

: ( i >
X [3 )
a,
. i
l(l.) " ( : )Q()
a,

are plotted against ¢, for v = 0.3, v, = 0.4 in Figs 8§-10. It is interesting to note how the
stress intensity factors alter for large ¢ ; in this limit the dominant behaviour comes from
w, (i/a)) and @, (i/a,). The real and imaginary parts behave as if the material is clastic for
small values of ¢, and then the effect of the fluid diffusion becomes significant. It is also

Steady case: Real part vs al
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Fig. 8. The rcal part of the complex scaling factor versus @, for v = 0.2, v, = 0.4,
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Steady case: Imaginary part vs al
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Fig. 9. The imaginary part of the complex scaling factor versus a, forv = 0.2, v, = 0.4,

interesting to note that the modulus of the scaling function tends to a constant. Numerically
it appears (sce Fig. 8) that

x . (10) (1 =v}(3—4v,)\ [ cosh (nz,)
liQ(,(u. (i())‘ - ((3 —4")(‘—%)) (b&;ﬂ;}})‘) (147)

In particular this implics,

IK™(V) , (148)

(1-v(3- 4@) coshﬁ(m;u))”z P
(3—4v)(1 —v,)/ \ cosh (ne) ‘
with K, now the clastic stress intensity factor with undrained coefficients, in terms of the
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matching type arguments in Appendix E of Craster and Atkinson (1992) and the stress
intensity factor for the undrained outer material. There s an identical result for the imper-
meable case. This is the square of the result predicted by the energy release rate argument
used in Section 5 for the impulsive cases. The limit of large @, corresponds to large velocities
(where dynamic effects may alter the results) or to cases where the consolidation coefficient
is small. ¢.g. clays. This limit is reminiscent of the steady cases considered in Craster and
Atkinson (1992) and Atkinson and Craster (1991) where the infinite velocity limit of the
steady stress intensity factors was the square of the result predicted using the energy release
rate. In the steady case this was rationalized by Rice and Simons (1976) using a heuristic
argument based on compartng the near tip displacement fields in the drained and undrained
cases. Such a heuristic argument does not appear to work here. although the result that
(147) s the square of the result predicted by the encrgy release rate, as in the previous
steady cases. does suggest that this is always the case. We can find no way to conclusively
prove this.

For comparison with previous results we consider the energy release rate for a steadily
propagating shear crack on an impermeable plane in an otherwise homogeneous material
and compare this with the energy release rate for a steadily propagating crack on an
impermeable interface. From Craster and Atkinson (1992) we take the mode 2 stress
intensity factor K, (¥) for the semi-infinite impermeable crackt in a homogeneous medium
subjected to a moving shear loading gy = —|t] e¥ %, with 1 = | +it,, then

12
\/ZIr[a’ - %}(1 + L)

d,

(G
q [£5) [ II|\>:,

The energy release rated, the energy required per unit advance of the crack, is given (in the
region v > 0) by

Ku”"’) =

{149)

G( ¥y = Af'( .Lj.)_(“_* \)

3G (150)

We plot G(V) divided by the energy release rate for an identically foaded clastic solid
[replace K (V) by \;‘IZItiam in (150 ascurvedin Fig. 1l forv =0.12, v, = 031
In the (impermeable) interfacial case

Gum(yy = o LT 51
) 16G (1 —v) (15D
With K™ (1) as defined in (145) above, we plot the energy release rate for
4GG (¥
o) (152)

2, +it)PFa(l=v)’

i.c. comparing the interfacial energy release rate against the equivalently loaded elastic
material, in Fig. 11 as curve ¢ for the same Poisson’s ratios as in the homogeneous case
above. The flow of encrgy, for small a,. into the crack tip is less for the interface case,
suggesting that the velocity of propagation will be smaller for this debonding; for larger a,

t We note that this stress intensity factor is the same as that for the shear fracture on and impermeable plane
in an undamaged homogeneous material and for mode | (tensile) fracture where the crack faces are impermeable,
it appears that for steadily propagating fracture in homogenecous materials there are only two different stress
intensity factors depending upon the pore pressure boundary conditions, i.c. permeable or impermeable, on the
crack faces.

¢ The authors apologize for the notation, here G is the shear modulus and G(17) is the energy release rate.
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Fig. 11 The encrgy release rates (normalized as in the text) as functions of @, = a¢¥/c for Poisson’s

ratios v =0.12, v, = 0.31 the curves correspond to (a) the permeable interface, (b) permeable

interface (homogencous case), (¢} the impermeable interface and (d) impermeable interface (homo-
geneous case).

this situation reverses. There is little difference between the various cases in this timit. The
curves b, a in Fig, 11 are the equivalent normalized encergy release rates for the permeable
interfaces. As can be scen the permeable cases have higher values, the impermeable interface
traps the fluid in the upper hall plane leading to larger encergy dissipation. The smaller
encrgy release rates suggest that less energy is available for fracture, a similar result for the
homogencous cases is found in Rudnicki and Koutsibelas (1991). We note that as v - v, —
! the interfacial and homogencous energy release rates tend to cach other. The X axis of
Fig. 11 contains the range of ¢, thought to apply for fault creep events.

From the contact zone analysis of Section 6 we can deduce that for larger velocities
we would expect a large contact zone, this may also help to retard the crack velocity if this
is due to a large shear component. For the complex stress intensity factor, which is always
inseparable into just tensile and shear components the inseparability becomes more marked.
The large imaginary component will alter the phase of the complex stress intensity factor,
although it is physically more interesting to consider the energy release rates as above. The
diffusion of the fluid through the material induces stresses which have a large effect on the
near crack tip fields. In the steadily propagating cases considered in Atkinson and Craster
(1991) and Craster and Atkinson (1992) for homogeneous materials the analytical solu-
tions showed a wake of pore pressure behind the crack tip it is the dissipation of energy
caused by the diffusion process which tends to retard velocity of the fracture. The wake
was more pronounced in the cases with impermeable crack faces as the fluid could not pass
through the cruck walls, It is clear from Figs 8-10 that the influence of difTusion is to induce
a significant change in scaling factors.

1.1, Crack tip fields

In the case of steadily propagating fracture the pore pressure diffusion equation (17)
becomes

Vip=—m - — —, (153)

and the elastic Navier equation with the coupling term (16) remains unaltered. As in
Atkinson and Craster (1991) and Craster and Atkinson (1992) we can deduce simple near
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crack tip fields. To leading order the stresses are the classical elastic solution with velocity
dependent stress intensity factors. The near crack tip pore pressure can be found from

. —alV ce
Vp = —.
p K €x

(154)

and an eigensolution of V°p = 0 which together satisfy the appropriate pore pressure
boundary condition.
In the permeable case we find that

—a V(1 =2v)riiiett-n
P~ "aGr(2m) " cosh (ne)

m(rmK[p)(V)(eMZ_e-192))' (lSS)

In the impermeable case

V(1 =2 ( - ( we | (1—i0) ,,,)>
~ _ £ g~ (im RN B AP (e . l
P~Po 4Gr(2n) " cosh (me) A\ KN+ (1 +1e) ¢ (156)

In both cases the pore pressure is clearly oscillatory. This raises interesting experimental
possibilities. [t is often thought that the mathematically equivalent thermoclastic equations
uncouple. This assumption is implicit in most of the work on fracture in thermoelastic
materials, €.g. Kuo (1990). This could be checked, for instance using the experimental work
of Zchnder and Rosakis (1991) on the temperature distribution of dynamically propagating
cracks in steel. In the mode 1 tensile case (for a homogencous material) that they consider,
although performed at significantly larger velocitices for which our theory here is necessarily
valid (because of the neglect of inertia), the temperature contours are quantitatively similar
to those in Atkinson and Craster (1991). The oscillatory behaviour for the pore pressure
we have shown above is driven by the dilatation, and so will only be present if the equations
arc fully coupled. This would provide an interesting and conclusive test on the validity or
otherwise of the uncoupling assumption.

So far in this paper we have not discussed problems in which the pore pressure
conditions are mixed, i.c. permeable crack faces and interface ahcad of the crack imper-
meable. The problem in the impulsive case is outlined in Appendix 4; we can, however.
derive some asymptotic results for the near crack tip ficlds. As in the unmixed cases, the
stresses will be the usual elastic solution with a velocity dependent stress intensity fiactor
and the pore pressure will be given in the same manner as above, as

S0 aV(=2nrtie < ,
~ 112 - 5 s_R —it Lt g7k V
p~ Ki(¥yrsing 4Grx(2m) T cosh (ne) \| © k)

A (((i—£2)+(§+£2)cz’“)+2£i)) e”""”’ci”’lr“(—§+i1:)K(V)> (157)
2({+¢?) sinh (ne) (i +&°) sinh (ne)

This first term is an eigensolution of V3p = 0 and the second term a particular solution of
(154). The coefficients K;(V) and K(V) = K, (V) +iK,(V) would need to be deduced from
the solution of a matrix Wicner-Hopf equation (see Appendix 4). We notc that these
solutions will also be the leading order solutions for the crack tip fields of an arbitrarily
moving crack.

8. CONCLUSION

The problem of interfacial fracture between a linear diffusive elastic medium and a
rigid substrate has been tackled analytically using the Wiener-Hopf technique. The complex
time dependent stress intensity factors are evaluated in Laplace transform space and inverted
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both analytically for small times and numerically for ail times. This complex stress intensity
factor characterizes the near crack tip stress fields. The main results are:

o The time dependent complex stress intensity factors for an impulsively loaded semi-
infinite crack in the permeable (92) and impermeable (93) interface cases are deduced ;
the analytic results are given in Laplace transform space. These results are then inverted
numerically and checked in the small time limit using a physical argument based on the
energy release rate.

o The small time behaviour of the intensity factors, e.g. Figs 1-3 show that the diffusion
can be expected to play an important role. For example, the complex stress intensity
factor is multiplied by a time dependent factor which has a large imaginary component.
The energy release rates for the two different interfaces are compared with the equivalent
homogeneous cases.

® A contact zone analysis is performed using the methods outlined in Atkinson (1982a,b).
The analysis assumes that the ratio of the contact zone length to the loading length is much
smaller than unity, hence the results will not be so accurate for asymmetric problems. The
effect of the pore pressure/temperature diffusion on the contact zone length is quantified.

The case of a steadily propagating, permeable or impermeable, semi-infinite interfacial
fracture is also considered here ;

o The velocity dependent complex stress intensity factors (144) and (145) are identified.
For large velocities, or materials with small consolidation cocfficients, the intensity factors
are again significantly altered by the diffusion process. and it can be expected to play an
important role. For example, the imaginary component of the velocity dependent factor
which multiplies the stress intensity factor becomes large, which alters the character of
the near crack tip stress ficlds. The energy release rates for the interfacial and the
equivalently loaded homogencous cases are plotted.

e Simple near crack tip pore pressure ficlds (155)-(157) are deduced which are oscillatory
in character. The oscillations will only occur for the fully coupled equations. The result
in (157) is deduced for the fully mixed problem, permeable crack faces and impermeable
ahead, see Appendix 4. This could form the basis for experimental work to verify or
otherwise the uncoupling of the thermoelastic equations.

The stress intensity factors as functions of t' = te/d” (or in the steady casesof @, = a¥/c)
depend only on the material parameters v, v, (the drained and undrained Poisson’s ratios).
The coupling plays an important role for all materials as either 1 — 0 (ora, - ). Asv—
v, the effect of the coupling decreases.

These analytic results are all derived using an idealised loading. However, it is possible
to superimpose the loadings to represent more general situations. These analytic results
provide a basis upon which future analytical, numerical and experimental studies can be
based.
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APPENDIX |: PRODUCT SPLITS
We split the function W($), appearing in (69), following the analysis in some detail and then bricefly outline

the main results for the other functions in the text.
To perform the product split for (), defined as

- ':l [ l pd
(E) = - — (& =Y ). Al
W (Z'Iu ZIi(l—Vu)( lel=¢ )) (Al)

we note that B($) has no zeros in the cut plane. Then for convenience we consider the function J(&) where
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. 6T L1 (TIE1-¢&Y) s
-5 (- =) (2
then as
R R ! R . e (3—HV)
s+, J(;)—~2—(t—v—)=l0 andas ¢— —x, J({)—e¢ =)’

To perform the product split for J(Z) = J,()/_($) and then deduce W, and W _, we consider

4 J
log (J—.(,i—)) =logJ/J, +log (T;) (A3)

Implicit in this splitting procedure, is. that for the convergence of the contour integrals (AS5), J(&) must tend to
Jyas |$] = x. Therefore we deduce that

t
m = .;,Ek)g (3-4v). (Ad)

The usual Cauchy representations for a product split are

s log(JT(:—)) log J..(¢)
+ — 4= N
mi ., g =8 log 7 (AS)

with  real and positive, d then tends to zero. The function log (J(&)//,) has branch cuts from i0, to ico and from
i to —i0 which can be checked numerically by following log (J(§)/J,) along either side of the imaginary axis,
e =0, +vifor —0x <y <.

ASHEN Sy = 1+ O(H/E Y when |E| - o the contribution to the integral from closing the contour of integration
about an are at infinity is zero. Defining

! Ma ol it 2
2w A=y T

0 to be the argument of =, and =z, as
1 ?_ 1_yin?
- +7 {(y 1)
2"0 2"(1 —V“)

)= .
1 yz_y(yl_l)I/Z
(”(i'n?* 2= ))

we collapse the path of integration about the branch cut in the upper half plane to give:

JOY _ =1/ (" log((3—4v):*) ® log ((3—4v)z))
’°g( 7, )"’_m(f »+i0) d”j. ) dy)' A8

the * denoting the complex conjugate, and although initially defined in the lower half plane, is by analytic
continuation a function valid in the whole complex plane except for the branch cut from i0, to ico.
Similarly J, can be evaluated by collapsing the integral around the lower branch cut

tog /., (5) = J(J. !2&.‘.‘3_‘%2(,),+f” '33“__3:_‘31)_-2@), (A9)

(A8)

(A7)

2ni (y=ig) r—ig)

although initially defined in the upper half plane the function can be analytically continued to define a function
valid everywhere except for the branch cut from i0_ to —ico. Using (A9 and AB) we can therefore deduce that

{ | ! d
J(&) = Jyexp (; (Iog(3—4v) tan - (E) + J; (Slog|zl+y0) (}'I:f:)))

+Jncxp<£J‘ wdy). (A10)
!

1 +&)

This can now be checked numerically with (A2) for real £.
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As =0, then J_-J, — J*% therefore we can deduce that

l—v\ 2 (1=m3=3\'*
J A0 = . A0 = " .
(4.0 ) (1-\-) 3.0 ((l—qu}—Jr) (ALD)

which are useful checks on (A9).
[n the limit as § — 0 the integrals can be rescaled and it can be shown that

s =(1=) 11 ull 34 2
(0) = l—\'; exp og = Jlog 3—~T‘u X (Al12)

with a similar expression for J_(3). This oscillatory behaviour as J tends to 0 makes the evaluation of the inverse
Laplace transform (92) a difficult process. Hence

J

;_'I‘Zo-m and ;V’___j’s:[‘:&m'

Note that in the elastic imit when v — v, or equivalently 5j — ., we have the result that

LR
W) = Jo frrs
5 -
This substitution then leads to the classical interfacial results.
Defining (&), from (86), as

I;I ! NINEN
i =2 - 3
() 2n“+,r”“_‘). (A13)

we follow the analysis above closely to define J(&) as

o s N S50
J(”)”:”.(l ~,,||+ l~‘)r> (Al4)

m cun be deduced to be given as before by (A4), The main difference from the previous product split is that J(&)
has a zero at £iff +0, (e on the imaginary axis approached from the right) with

72 =y + 07+ 4) Y
§ = - Al
/ ( 22 1) (A1)
As [f] 2 |, the logarithm of J(iy)/J, is undetined for | £ f. The branch cuts go from i0, to ti which

cian be checked numerically. Taking

l I T e ,i}:‘,,,, e
S (=) 230 —v) (=) (A16)
21, 29(1=v) 2901 —v)(1—p)"?
and
l +’V(—_}': +}4().!_ [)I'Z)
o, EXTTR YRS Y
5= 2y, W(b=v)(3°-1) i (ALT)
P S (VA
2n, 20 —-v)( =Dt
the main results are
L([Hos@=an [ log@nlzh Y (8=
logJ, (&) = ’m( (V"'s) d'l+J: i) d)) + 3log 15 ) (AIL8)
R ! I dy “Elog (3—-av) |2 dy
J@&) = J.,(lr;;y») cxp;[(log(}—-iv) l;ln"(s)-&-'[ (;logl:l-&-_vl‘f)(l_::::; +‘[ 2 tb("=+::|) )
S i) i i
(A19)
Also W _ =~L'——. W, =J.&r¥ and [T, 0] =7,0.)

sim et 2)

The product split of Q($) into a product of functions analytic in the “upper™, and “lower™ half complex
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planes respectively, is similar to the factorization of the function N($) performed in Appendix | of Atkinson and
Craster (1991). As a result the factorization is only sketched briefly here. Recalling that

Q) = =TI+ —dv)i). (A20)
This function has branch cuts from +10, to +i and can be shown to have no zeros in the cut plane. The

functions Q.. Q _ are defined in the usual manner by similar Cauchy representations to (AS) with Q replacing J.
Asymptotically as

I—d)(l-v
(——LJ—)> = = {1 +273-av)) = -Q,.

2v,—v)

[$l=-x, QC)— -—(
In particular by collapsing the contour integrals around the branch cuts we can deduce that
- l i p(l _pZ)l 2 dp
log(Q, (N =—| wun'{= — . 2
og (N = — J; an (y'+(3—4vu)ﬁ -0 (A2h

B -dv)(1-m\"*
(3—4v)(1—v,)

Q2,0 = < (A22

which is checked numerically against (178) and

_ . o o =p) T 2pdp ,
QQ) = -Q.,up(—;J‘n tan (p"+(3—4vu)ri)(p’+£’)>' (A23)

which is checked numerically against (A20) using the general purpose NAG integration routine DOLAJF. The
results are accurate to machine accuracy. The product split of (&) is related to that of A(&) in Craster and
Atkinson (1992) letting

Q&) =¢ - |:IE +(3 =4v,)4. (A29)

we can deduce that Q(E) [unlike N(E)] has no zeros in the cut plane, therefore

z _l l. | . ) I" B dp
|Ob(no(s)) = RJ‘" tan ((’l —;’)-'ir(p’:(i;—4\'u)g)> (Wp—l:i' (A25)

Q,(0) = Q,(0) and

PP A R r 2p dp
Q“'"“"“"(E j o ((l—p’)'“(p‘—(3~4vu)ri) P o) (A26)

which can be verified numerically. In the steadily propagating case the functions which arise can be split in a
similur manner and the results are just quoted here. Note that in the steady case I'? is now defined as I'? = £2 442,

22
X0 = VT, =GB —dv). L, () = {= T +id(3—dw), (A27,A28)
. 1 -0 s
W= (' 2'ru<'+2iri(l—-vu)>' (A9

. 1 (y+y"=-p'Y
) _ (3-—4w)(l—2’,u - _._ZW N
logw.(s)=§r—ri olog l J__ M ;:'IE
2, 2if(l—v)
! ()‘-,v"’(y—l)"-'))
L PETTAY I B T AN AN LA A
1 [~ ( ‘)( ., 2%i(1—v,) dy
I R y=ig' (A30)
Mo 2i(1=v)
ey on R d))
o) = Ef(l T3 T A —v“))' (A31)

which has a zero at —iff+0, with
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(2= (7 +4) ]
B=1 (T’f—r—_ 5 (A32)
i ¥ i(y—y3)! :)
san(1- g - s+ 2
oo By, ( M. 2A-v) - 20(A-vd /Y dy
logw, (3) = slog — |+ — | log - IR —
- ni g [+—l——+ v +l(y—y‘) - y=1g
2n, 2i(l—vy)  i(l—v)
l I O § 32
- (3—-43v) l-——-—+:—‘—‘i()t';)l,
. L= | 2y 2L =v )+ gy
i J. o8 I yo A
My 2(1=v)(+ )"
APPENDIX 2: FOURIER RESULTS
To evaluate the asymptotic behaviour of the stress ficlds we require the following Fourier inversion
. I R
Sily) = ;2;[ ) ;:',,:,TIT‘: dé. (Al4)
Recalling that the functions &' **"** have branch cuts from i0, to i the integral is evaluated (for n integer

and : real) by collapsing this integral around the branch cut from 10 to —ioo. The result 3(2)y(1 = 2) = n cosec
(rz) 1s also required to give the following Tauberian result

(A3S)

and y(2), the Gamma function, is defined in the usual manner to be
yz+1) =J‘ tie 'de (A36)
(]

Also to invert the minus transforms we have f_(—x) = /% (x), i.c. the complex conjugate of the equivalent plus
transform.

APPENDIX 3

The Fourier transformed displacements, stresses and pore pressure

U = =14, e "+ 4,e" T+ VB e~ 1), (A37)

Uy= —|&jAd, e ¥ T A e~ ¥B||Ele ¥ —(3—4v)B, e N7, (A38)
P= gf—(r’—ez)A;e-rhzaQ(l—2vu)|<:|13.e~“". (A39)

T = 2GiE(A N e Y 4+ TA e T+ YIEIB e N 4 (1 —2v) B, e, (A40)
Ty = 2G(EH A e M+ A e T+ 2(1L = v )[S1B e ¥+ YEB, e 78I, (A4])
T =2G(=YEB e (A, e M 4T3 4,6 )+ 20, 8| B e ), (A42)

APPENDIX 4: THE FULLY MIXED PROBLEM

In previous papers Atkinson and Craster (1991) and Craster and Atkinson (1992), the problems of fracture
in undamaged continuous materials are considered. In particular the situation of mixed pore pressure boundary
conditions is investigated, c.g. in the teasile case consider a permeable crack ; the symmetry of the problem then
sets an impermeable condition on the fracture plane ahead of the crack. In the interfacial situation we could
similarly consider a crack with permeable crack faces with the interface ahcad of the crack impermeable. Let us
bricfly consider the impulsive case ¢f. Section 3.1 and in addition to (55)-(58) dcfinc the following half range
transforms;
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0
'[ M ' dX, (A43,A44)

- <X =
P, —J; P(X,0,5)e~"dX, R_ . F3%

and use the same loadings as in Section 3.1. The resulting matrix Wiener-Hopf equation is

ta,c'’
T. 5P i1 +igay) 3 2l-v)P,
<r.)_ nae' T IBIT )| —i-20)R_
ST+ -

26§ (=271 -v) -2 (3-4v)3R_
= ———m—— Vv —_———
TiQ(¢) . =TI =-v)i ||~ * 4GB(l +v,)¢* (A43)
Z(S) T S— U

) and Z(Z) are defined as in (A24), (68) and
2(8) = ST = 1§D +TF3 = 4v) = 271E1(1 —v,). (Ad6)

The added complication of the mixed pore pressure boundary conditions introduces an asymmetry in the matrix
equations which we, so far, have been unable to factorize.

APPENDIX 5: NUMERICAL INVERSION OF LAPLACE TRANSFORMS

In the previous works by the authors we have used the Stehfest (1970) algorithm to invert Laplace transforms
numecrically. This algorithm has proved to be both fast and accurate, but suffers from numerical rounding errors
which can corrupt the results. The algorithm is not suitable for inverting functions which are complex and have
unusual behaviour at particular points. In our case the function J, (i/a,) is a function which is discontinuous at
the origin as it is approached from 0. In this case a better algorithm is that of Talbot (1979) which is in essence
based on the earlicr thesis of Green (1955). The algorithm has to be slightly adapted for use here. In Talbot's
paper the Bromwich inversion contour is replaced by a substitute contour, L, with %(s) - — oo at cach end. This
avoids complications, from the oscillations of ¢, which would arise in the direct numerical integration along the
Bromwich contour. This substitute contour clearly has to enclose all the singularities and branch cuts of the
function to be inverted, so limits the range of application of the method, i.e. functions with an infinite number of
singularitics with imaginary parts tending to infinity could not be inverted, but the method is sufliciently general
to invert most functions usually encountered.

The notation used here will follow Talbot very closely and the adaptation required will be briefly sketched.
Taking the function to be inverted as F(s) we can introduce a scaling 4 and shift o parameter which are used to
ensure that L contains all the singularities. Then we invert F(As+0):

at

ic

S =

2ni

j e“ F(is+a) ds. (A4T)
L

Now Talbot maps the interval —2ni to 2ni onto a path, M, described by an analytic function

[[S XN ¥}

s=8(z) = (colh% +v>,

with v a free parameter, so that
l l n .
S = Smi L Q(x)d= = I j_ N QGy) dy. (A48)

with Q(z) = 4 ¢“***"F(4S+0)S°(). Talbot then assumes that Q(—iy) = @*(iy). This is truc if F(s) is real,
however, J, (1/a)) in the text is complex so we follow Talbot by defining

‘A =k77|:' a=0coth, S(z)=2+iv0, B =0+a(z-1)8, (A49)
S'(z) = J(v+if), F(is+0) =G, +iH,, F((is+09)*) = G, +iH,, (AS0)

then approximate the integral (A47) with the trapezoidal rule and take a suitable choice of @, A, v and n. f(1)
becomes
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S = - 120G, ~ BH )+ (vG + BH ) cos (60

+{{vHy =BG )~ (BG, + vH Yysin (vt} + {{ BG, +vH ) + (— BG, + vH ;))cos (v61)
+H(Gy ~BH )~ (vG o+ BH ) sin (v0)eny,.  (ASD)

The prime on the summation is used to denote that we take half the values in the sum when k takes the valyes 0
and n— 1. The error in this algorithm is discussed in some detail by Talbot and a similar analysis will hold here.



